

An Evaluation of Screening by Let's Talk Reading: A case for further roll-out

Dr Kelly-Marie Taylor, University of Suffolk

28th July 2025

Table of Contents

Executive Summary	3
Background and Rationale	3
Key Findings.....	3
Conclusions	4
Key Recommendations	5
Introduction	6
1. Factors Impacting Children's Reading Abilities.....	7
1.1 Dyslexia and Reading Development	7
1.2 Irlen's Syndrome and Visual Stress.....	8
1.3 Other Developmental Conditions.....	8
1.4 Socioeconomic and Environmental Factors.....	9
1.5 Conclusion	9
2. Screening for Conditions that Impact Children's Reading Abilities	10
2.1 Current Screening Practices in the UK	10
2.2 Cost of Implementing Screening	11
2.3 Impact of Screening on Access to Support.....	12
2.4 Early Identification and Intervention	12
2.5 Conclusion	13
3. The Significance of Key Stage 2 SATs and their Impact on Lifelong Outcomes ...	13
3.1 Disparities in Outcomes by Socioeconomic and Demographic Factors.....	14
3.2 Implications for Pupils with SEND and EAL	14
3.3 Reading Attainment as a Predictor of Lifelong Outcomes.....	15
3.4 Conclusion	15
4. The Ipswich Picture.....	16
4.1 Ipswich Primary Schools Performance & Characteristics Summary (2024).....	16
4.2 Ipswich Primary Schools: Summary of Attainment, Needs and Equity Challenges	18
4.3 Key Trends.....	18
4.4 Conclusion and Implications	19
5. The Irlen Syndrome Screening Trial	20
5.1 Why Irlen Screening Matters	20

5.2 Overview of the Screening Programme	21
5.3 Diagnosis and Immediate Support	21
5.4 Access to Tinted Lenses	22
5.5 Broader Implications and Reflections.....	22
5.6 Conclusion	22
6. Conclusions and Recommendations	23
6.1 Summary of Key Findings from the Literature	23
6.2 Summary of Key Findings from the trial.....	24
6.3 Conclusions.....	25
6.4 Recommendations	25
7. References.....	28

Executive Summary

This report presents the findings of an independent evaluation of Let's Talk Reading's (LTR) Irlen Syndrome screening trial, conducted across four primary schools in Ipswich. The evaluation explores the effectiveness of early screening for visual stress and its potential to improve literacy outcomes for children in disadvantaged communities. It also draws on a comprehensive literature review to contextualise the trial within broader research on reading difficulties, early intervention, and educational equity.

Background and Rationale

LTR is a Suffolk-based charity committed to tackling low literacy rates through targeted, community-based interventions. With a focus on the most deprived areas of Ipswich, LTR delivers programmes across the life course from early years to adulthood. This report focuses on their school-age strand, particularly the implementation of Irlen Syndrome screening as a tool for identifying hidden barriers to reading.

Reading is a foundational skill that underpins academic success and lifelong opportunity. However, too many children face challenges in acquiring literacy due to neurodevelopmental conditions such as dyslexia, Irlen Syndrome, developmental language disorder (DLD), ADHD, and autism spectrum disorder (ASD). These conditions often go undiagnosed, particularly in schools serving disadvantaged populations, where access to specialist assessment is limited.

LTR's screening trial aimed to address this gap by embedding Irlen screening within schools, training staff, and providing immediate support to children identified with visual stress.

Key Findings

From the Literature

- **Dyslexia** affects around 10% of the population and is characterised by persistent difficulties in phonological processing and decoding. Early identification is critical, yet many children remain undiagnosed due to inconsistent screening practices.
- **Irlen Syndrome** is a perceptual processing disorder that affects visual comfort and reading fluency. While the evidence base is mixed, many children report significant improvements with coloured overlays or tinted lenses.
- **Other developmental conditions**, including DLD, ADHD, ASD, and DCD, can also impact reading through deficits in attention, language, and executive function.

- **Socioeconomic disadvantage** is a major predictor of poor literacy outcomes. Children from low-income households are less likely to receive early intervention and more likely to attend under-resourced schools.
- **Early screening and intervention** are consistently shown to improve reading outcomes and reduce long-term educational and economic disparities.

From the Screening Trial

- **High prevalence of Irlen Syndrome:** Of the 88 children screened, 77 (87%) were identified as experiencing visual stress. This validates staff concerns and highlights the extent of undiagnosed need.
- **Immediate support provided:** All identified children received overlays, information for families, and access to further diagnostic services. Schools were given funding to purchase coloured paper and overlays.
- **Equity in access to lenses:** LTR fully funded tinted lenses for 15 children, partially funded 2 more, and supported families in accessing alternative funding.
- **Capacity building:** Seven school staff members were trained as screeners, and all schools received whole-staff awareness training, embedding sustainable capacity for future screening.
- **Positive feedback:** Schools and families reported improvements in reading engagement, comfort, and confidence. While qualitative, these outcomes suggest meaningful educational impact.
- **Targeted support in high-need schools:** The trial focused on schools with high levels of SEND, FSM, and EAL, demonstrating the model's potential to promote educational equity.

Conclusions

The findings from both the literature and the trial converge on a clear conclusion: early, targeted screening for reading-related conditions is essential to improving literacy outcomes, particularly in disadvantaged communities. The trial has shown that Irlen screening can be implemented effectively and sustainably within schools, with modest investment and strong staff engagement.

However, the broader landscape of screening in the UK remains fragmented. There is no national strategy for the systematic identification of dyslexia, Irlen Syndrome, or related conditions. This contributes to significant disparities in access to support and undermines efforts to close the attainment gap.

LTR's model offers a scalable, cost-effective blueprint for addressing this gap. By embedding screening within schools, training staff, and providing immediate support, LTR has demonstrated how early intervention can remove hidden barriers to learning and promote long-term educational success.

Key Recommendations

1) Expand Irlen Screening Across More Schools

Extend the programme to additional schools, prioritising those with high levels of SEND, FSM, and EAL. A phased rollout with training and modest funding will ensure sustainability.

2) Integrate Screening for Dyslexia and Other Conditions

Develop a multi-condition screening model that includes dyslexia, DLD, ADHD, and other neurodevelopmental conditions. This will provide a holistic understanding of each child's needs.

3) Develop a Standardised Screening Framework

Collaborate with local authorities and academic partners to create a national framework with validated tools, referral pathways, and staff training modules.

4) Secure Sustainable Funding

Continue to seek funding from charitable, governmental, and philanthropic sources to ensure equitable access to screening and support. A pooled funding model with multiple partners or contributors could enhance sustainability.

5) Monitor and Evaluate Long-Term Impact

Track outcomes such as reading attainment, engagement, and wellbeing to strengthen the evidence base and support future investment.

6) Advocate for Policy Change

Use the findings to engage with policymakers and advocate for statutory screening for reading-related conditions as part of national literacy strategy.

Introduction

Let's Talk Reading (LTR) (Charity No. 1180559) is a Suffolk-based charity committed to tackling low literacy rates among children and adults across Ipswich. With a particular focus on the most deprived areas of the town, LTR delivers targeted, community-based interventions designed to improve literacy outcomes from birth through to adulthood (LTR ND). Their work is grounded in the belief that literacy is a fundamental right and a key determinant of life chances, wellbeing, and social inclusion. They focus on the most disadvantaged wards of Ipswich (as provided by the Suffolk Observatory) to provide a wide range of programmes and services partnering with other organisation to target intervention in the most disadvantaged areas.

This report presents findings from an independent evaluation conducted by the University of Suffolk to assess the impact of LTR's programmes and services. The evaluation pays particular attention to LTR's innovative approach to literacy screening, with a focus on the trial and implementation of Irlen Syndrome screening, alongside consideration of other diagnostic tools aimed at identifying barriers to reading such as dyslexia. These screening initiatives represent a critical strand of LTR's work with school-aged children, enabling early identification and support for those whose reading difficulties may otherwise go unrecognised.

LTR's own data highlights the scale of the challenge: while 1 in 6 adults in England struggle with reading, the figure for Ipswich is estimated at 7.6%, equating to approximately 8,000 adults who cannot read and a further 20,000 who struggle with reading (LTR ND). In response, LTR has developed a multimodal, place-based approach to literacy intervention, working in partnership with local organisations and educational settings to embed literacy support across the life course.

Let's Talk Reading programmes include:

- **Let's Talk Babies** (birth to 15 months): supporting early language development through shared reading and song.
- **Let's Talk Reading – Early Years** (ages 2–4): promoting reading in nursery settings and at home.
- **Let's Talk Reading – School Age** (ages 5–16): delivering Irlen's and dyslexia screening, book gifting, and school library development.
- **Let's Read Ipswich – Adults**: providing one-to-one coaching to improve adult literacy.

By foregrounding the role of screening in identifying and addressing hidden barriers to literacy, this report aims to highlight the importance of early, targeted intervention in improving educational outcomes and life opportunities for individuals across Ipswich.

Literature Review

1. Factors Impacting Children's Reading Abilities

Reading is a foundational skill that underpins academic success and lifelong learning. However, a significant proportion of children face barriers to reading acquisition due to neurodevelopmental conditions, perceptual processing difficulties, and socio-environmental factors. This review explores the impact of dyslexia, Irlen Syndrome, and other developmental conditions on children's reading abilities, drawing on academic literature and UK-based research, including data from Let's Talk Reading (LTR) screening trials in Ipswich.

1.1 Dyslexia and Reading Development

Dyslexia is one of the most widely studied reading disorders, affecting approximately 10% of the population (British Dyslexia Association, 2025). It is characterised by difficulties in phonological processing, decoding, and working memory, despite adequate intelligence and educational opportunity (Duff et al., 2023). Children with dyslexia often struggle with sound-letter correspondence, reading fluency, and spelling, which can lead to broader academic challenges.

Developmental Dyslexia is characterised by persistent difficulties in word reading and spelling, often linked to phonological processing deficits (British Dyslexia Association 2025). However, Caldani et al. (2022) and Buchweitz et al. (2023) highlight that dyslexia also involves problems with eye movement control, which points to multiple possible causes behind the condition. Caldani et al. found that children with dyslexia and those with ADHD exhibited different eye movement patterns during reading, compared to typically developing children and those with ADHD alone.

Neuroimaging studies (Langer et al., 2019) support these findings, showing structural and functional differences in brain regions associated with executive function and reading, particularly in children with both ADHD and dyslexia. These findings align with Pennington's (2006) multiple-deficit model, which posits shared genetic and cognitive risk factors across neurodevelopmental disorders.

Research by Duff et al. (2023) also found that children with dyslexia and/or developmental language disorder (DLD) showed persistent deficits in reading and maths achievement, with minimal improvement over time. Notably, children with co-occurring dyslexia and DLD performed significantly worse than those with either condition alone, highlighting the compounded impact of multiple learning difficulties.

Early identification and intervention are critical in supporting students with learning disabilities. Furthermore, data supports early identification as one of the key factors in helping students overcome their reading challenges (Daniel, Clucas and Wang 2025). However, access to specialist support remains inconsistent across UK schools, with the

British Dyslexia Association (2025) reporting that many children do not receive timely or adequate intervention.

1.2 Irlen's Syndrome and Visual Stress

Irlen Syndrome, also known as Meares-Irlen syndrome, Scotopic Sensitivity Syndrome or visual stress, is a perceptual processing disorder that affects how the brain interprets visual information. Symptoms include distorted or moving text, headaches, and difficulty tracking lines, which can significantly hinder reading fluency and comprehension (Henderson et al., 2012). Irlen's has been associated with co-occurring with Dyslexia and the prevalence of Irlen's is higher in dyslexic individuals. Coloured overlays and lenses are frequently used to mitigate the visual stress experienced and remediate reading challenges with an attempt to improve comfort and performance while reading (Henderson et al 2012).

Estimates suggest that Irlen Syndrome may affect 5–15% of children, with higher prevalence among those already experiencing reading difficulties (Irlen Syndrome Foundation, 2015). Screening typically involves the use of coloured overlays or lenses, which some children report as helpful in reducing visual discomfort. However, the evidence base remains mixed. While Wilkins (2002 cited in Henderson et al 2013) found improvements in reading speed with overlays, Henderson et al. (2013) concluded that benefits were likely due to placebo effects rather than measurable neurological changes. Despite this, visual stress is well recognised as a potential sensory disorder that could impact a child's ability to gain fluency and confidence in reading (Irlen Syndrome Foundation 2025).

LTR's screening trial in Ipswich included Irlen assessments for primary-aged children, with schools, families, and children reporting improvements in reading engagement and wider impacts on life following the use of overlays. However, given the lack of consensus in the literature, overlays should be considered a supplementary aid rather than a substitute for structured literacy instruction.

1.3 Other Developmental Conditions

Several other developmental conditions can impact reading ability:

- **Developmental Language Disorder (DLD)** affects expressive and receptive language skills, leading to difficulties in understanding text and following narratives. Children with DLD often struggle with vocabulary acquisition and sentence structure, which impairs reading comprehension (Duff et al., 2023).
- **Attention Deficit Hyperactivity Disorder (ADHD)** can affect sustained attention, working memory, and task persistence, all of which are essential for reading. Children with ADHD may skip lines, lose their place, or struggle to focus on text, leading to inconsistent reading performance (BookTrust, 2025).

- **Autism Spectrum Disorder (ASD)** and other forms of Neurodivergence may influence reading through literal interpretation, difficulty with inference, and challenges in understanding figurative language. While some autistic children develop strong decoding skills, comprehension can be significantly impaired (Davidson, Kaushanskaya, and Weismer 2018). Furthermore, the BookTrust (2025) suggest that being on the autism spectrum can involve challenges in reading, including attention, motivation and decoding. This can occur alongside other learning difficulties and there tends to be familial patterns.
- **Developmental Coordination Disorder (DCD)**, or dyspraxia, can affect fine motor skills needed for writing and may co-occur with reading difficulties due to overlapping cognitive demands, such as working memory and executive function challenges (Dyspraxia UK 2025).
- **Hearing Impairments** can delay phonological awareness and speech sound acquisition, which are foundational for decoding and spelling (Narr 2008). In Suffolk, all children in Reception at school, aged 4-5 years take part in the National Child Measurement Programme (NCMP) (Suffolk County Council 2024); this includes Hearing and Vision screening tests for all children in Suffolk, which is not part of the wider national screening programme.

1.4 Socioeconomic and Environmental Factors

There is a strong correlation between high levels of Special Educational Needs and Disabilities (SEND), families with eligibility for Free School Meals (FSM), and lower Key Stage 2 reading outcomes, as explored later. Schools with SEND rates above 20% consistently performed below local and national averages, while those with lower SEND and FSM rates achieved higher outcomes.

This aligns with national research indicating that socioeconomic disadvantage is a significant predictor of literacy difficulties. Children from low-income households are less likely to have access to books, be read to regularly, or receive early intervention, all of which contribute to the literacy gap (British Dyslexia Association 2025). Let's Talk Reading aim to address social disadvantage by targeting their programmes effectively based on population need and by targeting the most deprived areas of Ipswich as identified by the Suffolk Observatory.

1.5 Conclusion

Children's reading abilities are shaped by a complex interplay of neurodevelopmental, perceptual, and environmental factors. Dyslexia and DLD present persistent challenges that require structured, evidence-based interventions. Irlen Syndrome is an identified factor of visual stress which has shown enhancement with the use of overlays and coloured lenses, though the evidence base remains inconsistent. Other conditions such

as ADHD, ASD, and hearing impairments further impact the reading landscape, necessitating comprehensive screening and tailored support.

Initiatives such as LTR's screening programme have the potential play a vital role in identifying and addressing these barriers. Systemic improvements in early identification, and equitable access to specialist services are essential to ensure all children can achieve their reading potential.

2. Screening for Conditions that Impact Children's Reading Abilities

Reading is a complex cognitive process that relies on the integration of multiple neurological, sensory, and linguistic systems. As discussed, difficulties in reading can arise from a range of developmental conditions, including dyslexia, Irlen syndrome, language disorders, and broader neurodiversity profiles such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Early identification of these conditions is critical to ensure timely intervention and support. This section explores how such conditions are currently screened for in the UK, the extent and cost of screening, and the impact of early identification on children's reading and educational outcomes.

2.1 Current Screening Practices in the UK

2.1.1 Dyslexia

In the UK, there is no statutory requirement for universal screening for dyslexia in schools. Identification typically occurs through teacher referral, followed by assessment by a specialist teacher or educational psychologist. The British Dyslexia Association notes that many children with dyslexia remain undiagnosed, with 80% leaving school without formal identification (British Dyslexia Association 2025). Screening tools such as the Lucid Rapid and the Dyslexia Early Screening Test (DEST) are used in some schools, but implementation is inconsistent and often dependent on local authority funding or school policy (Rose, 2009). However there is a strong recognition that the earlier the identification the better the potential outcomes for the child are (Rose 2009).

2.1.2 Irlen Syndrome

Irlen syndrome, also known as visual stress, is also not routinely screened for in UK schools. Diagnosis typically requires assessment by a certified Irlen practitioner or optometrist trained in visual stress. While some schools may refer children for assessment if they report visual discomfort or reading difficulties, there is no national framework for screening. The lack of consensus on diagnostic criteria and limited empirical support for Irlen overlays has contributed to its exclusion from standard screening protocols (Kriss and Evans, 2005). However, Kriss and Evans (2005) recognise that despite Dyslexia and Irlen's frequently co-existing they are in fact discrete conditions

which are detected and treated in different ways. Despite the challenges LTR were able to implement a successful screening programme which is discussed later in this report.

2.1.3 Language Disorders

Developmental Language Disorder (DLD) affects approximately 7% of children and can significantly impact reading acquisition, this equates to around 2 out of every class of 30 experiencing language disorder that is significant enough to impact academic progress (Norbury et al., 2016). Screening for language difficulties is not universally implemented in the UK, although some local authorities or education settings use tools such as the WellComm toolkit or the Language Link system in early years settings. Speech and language therapists (SLTs) often rely on teacher observations and referrals, which can delay identification, particularly in children with subtle or co-occurring difficulties.

2.1.4 Neurodiversity

Conditions such as ASD and ADHD are typically identified through multi-agency assessments involving educational, medical, and psychological professionals. While these conditions are not directly screened for in relation to reading, their impact on attention, executive function, and language processing can significantly affect literacy development (Pennington, 2006; Langer et al., 2019). Pennington (2006) argues to understand the impact of various forms of neurodiversity on reading ability a multi-factor cognitive deficit model should be adopted to understand that Dyslexia, ADHD, ASD and Speech Sound Disorder (SSD) can (but not always) present alongside reading difficulties. Screening tools such as the Strengths and Difficulties Questionnaire (SDQ) or the Conners Rating Scales may be used in schools, but again, implementation varies widely.

2.1.5 Extent of Screening Implementation

There is currently no national, standardised screening programme for reading-related conditions in the UK. Screening practices are fragmented and often rely on individual school policies, local authority initiatives, or parental advocacy. For example, Suffolk County Council offers hearing and vision screening in Reception year, but follow-up support is inconsistent, potentially leaving children with undetected sensory barriers to reading (Suffolk County Council, 2024).

2.2 Cost of Implementing Screening

The cost of implementing screening programmes varies depending on the tools used and the scale of delivery. For example, the Lucid Rapid dyslexia screener costs approximately £3–£5 per pupil, while more comprehensive assessments by educational psychologists can exceed £500 per child (British Dyslexia Association 2023). Language screening tools such as WellComm cost around £300–£400 for a full toolkit, with additional training costs for staff. While initial costs may seem high, early screening can reduce long-term

expenditure on specialist interventions, educational support plans, and mental health services (Snowling and Hulme, 2012).

2.3 Impact of Screening on Access to Support

Early screening enables timely identification of children at risk of reading difficulties, allowing for targeted intervention before problems become entrenched. Studies show that children who receive support in Key Stage 1 are more likely to achieve age-appropriate reading levels than those identified later (Rose, 2009). Screening also facilitates access to specialist services, such as SLTs or dyslexia tutors, and can inform the development of Education, Health and Care Plans (EHCPs) where necessary.

2.4 Early Identification and Intervention

The importance of early identification is well established in the literature. Pennington (2006) argues that developmental disorders are best understood through a multiple-deficit model, where early detection of overlapping risk factors (e.g., phonological deficits, attention difficulties) can guide effective intervention. Similarly, Langer et al. (2019) found that children with comorbid dyslexia and ADHD showed distinct neural profiles, underscoring the need for early, tailored support.

Intervention studies consistently demonstrate that structured, phonics-based programmes are most effective when delivered early. For example, systematic synthetic phonics (SSP) schemes have been shown to significantly improve decoding and spelling skills in children with dyslexia when implemented in Key Stage 1 (Torgerson, Brooks, and Hall 2006). It is important to note that Torgerson, Brooks and Hall's (2006) work advocated for the universal use of SSP regardless of reading difficulty or typical development, finding no evidence that this would hinder those typically developing. In current educational policy, all children are taught to read using SSP as a universal policy with statutory testing at Year 1 (age 5-6 years) to determine their abilities to decode words using SSP (Standards & Testing Agency DfE 2025). Despite the universality of SSP schemes across all early literacy instruction, conditions like Dyslexia and other differences continue to impact children's literacy development and educational outcomes, therefore calling for other forms of more targeted intervention to support children who experience reading difficulties. This is supported by the British Dyslexia Association (2021) who state:

“There is substantial evidence spanning 35 years which demonstrates that up to 25% of children cannot learn to read just by learning phonics, including most children with dyslexia and other specific learning difficulties. Children with reading difficulties benefit when a range of approaches to teaching reading are used alongside synthetic phonics”

They further called for the government to revise their policy that SSP is the only method to teach reading (British Dyslexia Association 2021) to recognise the diversity of children's needs and abilities.

The Rose Report underscores the critical importance of early identification and intervention for children with dyslexia and literacy difficulties. It highlights that timely, systematic support can significantly improve reading outcomes and reduce the long-term educational and emotional impact of undiagnosed dyslexia (Rose 2009). Furthermore, (DfE 2025) recognise early intervention is essential to improving outcomes for children with dyslexia and other learning differences. The UK government's strategy, *Giving Every Child the Best Start in Life*, emphasises the importance of high-quality early education and care, aiming for 75% of children to reach a good level of development by age five. This includes early identification of developmental needs and targeted support to ensure children can thrive academically and socially.

Children who receive early support for reading difficulties are more likely to achieve expected levels in English and other subjects. Reading is foundational to accessing the curriculum, and delays in literacy can have cascading effects on academic achievement, social development, and future employment (Snowling and Hulme, 2012). Screening and intervention not only improve reading outcomes but also contribute to greater educational equity by reducing the attainment gap for children with special educational needs. Despite this there is no universal screening programmes meaning that the identification of conditions that could impact literacy development remain patchy and inconsistent.

2.5 Conclusion

While the UK has made progress in recognising the importance of early identification, screening for conditions that impact reading remains inconsistent and underfunded. A national strategy for universal screening in the early schooling, covering dyslexia, language disorders, sensory impairments, and neurodiversity, could significantly improve outcomes for children at risk. Investment in screening is not only cost-effective but essential for ensuring that all children have the opportunity to become confident, capable readers.

3. The Significance of Key Stage 2 SATs and their Impact on Lifelong Outcomes

Key Stage 2 (KS2) Standard Assessment Tests (SATs) are statutory assessments taken by pupils in England at the end of primary school, typically at age 10–11. These assessments, introduced in 1995, evaluate attainment in core subjects, primarily English and mathematics and serve as a national benchmark for pupil progress. While KS2 SATs are low-stakes for pupils in terms of direct consequences, they are high-stakes for schools, influencing institutional accountability and resource allocation (Bew, 2011).

The July 2025 Department for Education (DfE 2025) report provides compelling evidence that KS2 attainment is strongly associated with lifetime earnings. Using longitudinal data from the Longitudinal Education Outcomes (LEO) dataset and simulations based on the Labour Force Survey (LFS), the study estimates that a one standard deviation improvement in KS2 English and maths attainment correlates with an average increase of £63,700 in discounted lifetime earnings, equivalent to a 13.8% uplift (DfE, 2025).

These findings underscore the foundational role of primary education in shaping future socioeconomic trajectories. The report also highlights that KS2 attainment is predictive of subsequent academic success, particularly at GCSE level, which in turn influences access to further education and employment opportunities. This aligns with earlier research by Machin and McNally (2008) and Crawford and Cribb (2013), who found that early reading and maths skills significantly affect earnings in adulthood.

3.1 Disparities in Outcomes by Socioeconomic and Demographic Factors

The report reveals that while the percentage returns to KS2 attainment are relatively consistent across socioeconomic groups, absolute returns differ markedly. Pupils eligible for Free School Meals (FSM), a proxy for the most economically disadvantaged group, experience lower lifetime earnings gains (£52,400) compared to their non-FSM peers (£65,500), despite similar percentage increases (14.4% vs. 13.7%) (DfE, 2025). This suggests that structural inequalities persist even with an agenda of social mobility, with disadvantaged pupils facing barriers that limit the full realisation of educational benefits.

Gender disparities are also evident. Women, despite earning less on average, see higher percentage returns (18%) from improved KS2 attainment than men (10%), indicating that early academic success may play a role in narrowing the gender wage gap. Ethnic disparities are more complex; Black pupils show lower absolute returns (£53,200) compared to other groups, though percentage differences are less pronounced. These patterns reflect broader issues of intergenerational mobility and labour market discrimination (Gregg et al., 2019).

3.2 Implications for Pupils with SEND and EAL

While the report does not provide disaggregated earnings returns specifically for pupils with Special Educational Needs and Disabilities (SEND) or those with English as an Additional Language (EAL), it includes these variables as controls in its regression models. This suggests that KS2 attainment are net of these influences, but it also highlights a gap in the literature. Given that pupils with SEND and EAL often face unique educational challenges, further research is needed to understand how early attainment translates into long-term outcomes for these groups. Snowling and Hulme (2012) emphasise the importance of early identification and tailored interventions for children with language and reading difficulties, which may be particularly relevant for SEND and EAL populations.

3.3 Reading Attainment as a Predictor of Lifelong Outcomes

The report's findings reinforce the critical importance of reading attainment at KS2. Although maths yields higher financial returns, reading skills are more stable across the life course and are strongly linked to subsequent educational attainment. The mediation analysis shows that most of the return to English is explained by later qualifications, particularly GCSEs, suggesting that early reading proficiency facilitates academic progression (DfE, 2025). This supports the argument that reading difficulties, if unaddressed, can have cascading effects on educational and economic outcomes.

“Reading also enables pupils both to acquire knowledge and to build on what they already know. All the skills of language are essential to participating fully as a member of society; pupils who do not learn to speak, read and write fluently and confidently are effectively disenfranchised.” (DfE 2014)

Moreover, the report finds that improvements in KS2 English and maths are associated with persistent earnings advantages throughout adulthood, with lower-attaining peers failing to catch up even by retirement age. This highlights the long-term consequences of early educational disparities and underscores the need for robust screening and intervention strategies in primary education.

3.4 Conclusion

The July 2025 report provides robust empirical evidence that KS2 attainment, particularly in reading and maths, is a strong predictor of lifetime earnings. These findings have significant implications for education policy, especially in relation to early identification and intervention for reading difficulties. Disparities by socioeconomic status, gender, and ethnicity point to the need for targeted support to ensure that all pupils can benefit equally from early educational success. For pupils with SEND and EAL, further research is needed to unpack the nuanced ways in which early attainment interacts with lifelong outcomes. Overall, the report strengthens the case for investing in early literacy and numeracy as a means of promoting equity and long-term wellbeing

4. The Ipswich Picture

The below highlights data for Ipswich Primary Schools it considers the KS2 SATs results for 2024, looking at the percentage that achieved the expected standard in reading, writing and mathematics. This is compared to the local authority and national averages. Also compared are the percentages of pupils with Special Educational Needs or Disabilities (SEND), Free School Meals (FSM) and English as an Additional Language (EAL).

4.1 Ipswich Primary Schools Performance & Characteristics Summary (2024)

School	Ofsted	KS2 RWM Compared to LA 2024 (56%) & Nat (61%)	% SEND	% FSM	% EAL
Dale Hall	Good (2019)	64% Above Both	19.3%	9.0%	5.0%
Britannia	Good (2023)	64% Above Both	11.8%	11.4%	16.5%
Sidegate	Good (2022)	70% Above Both	7.4%	6.5%	15.6%
Whitehouse	RI (2022)	55% Below Both	17.2%	36.7%	17.3%
Springfield Junior	Good (2019)	57% Above LA / Below Nat	17.4%	23.5%	17.4%
Sprites Academy	Good (2022)	56% In line with LA / Below Nat	20.1%	35.4%	13.7%
Cliff Lane	Good (2019)	59% Above LA / Below Nat	16.8%	24.9%	23.0%
Clifford Road	Good (2022)	73% Above Both	10.3%	13.8%	19.1%
Broke Hall	Good (2021)	64% Above Both	11.1%	10.2%	8.4%
Castle Hill Junior	Good (2023)	51% Below Both	16.2%	38.3%	15.5%

School	Ofsted	KS2 RWM Compared to LA 2024 (56%) & Nat (61%)	% SEND	% FSM	% EAL
Morland	Good (2023)	46% Below Both	26.1%	56.7%	28.2%
Piper's Vale	Good (2022)	43% Below Both	25.2%	64.3%	21.4%
Ravenswood	Good (2022)	58% Above LA / Below Nat	18.0%	32.7%	20.6%
Ranelagh	Good (2022)	51% Below Both	27.1%	56.8%	35.7%
Murrayfield	Good (2023)	48% Below Both	24.0%	55.7%	27.6%
Handford Hall	Good (2021)	58% Above LA / Below Nat	19.1%	45.8%	65.3%
Gusford	Good (2021)	58% Above LA / Below Nat	20.5%	33.7%	13.0%
Halifax	RI (2022)	47% Below Both	28.2%	55.0%	16.5%
St Helen's	Good (2018)	57% Above LA / Below Nat	15.6%	26.5%	41.6%
St Margaret's	Good (2019)	60% Above LA / Below Nat	11.8%	16.9%	18.7%
St John's C of E	Good (2019)	60% Above LA / Below Nat	11.2%	16.4%	23.1%
Somersham	Good (2019)	75% Above Both	12.5%	10.4%	3.6%
Rose Hill	Good (2023)	49% Below Both	22.5%	47.1%	27.8%
Rushmere Hall	Good (2017)	62% Above Both	14.2%	22.8%	19.6%

School	Ofsted	KS2 RWM Compared to LA 2024 (56%) & Nat (61%)	% SEND	% FSM	% EAL
Springfield Infant	Good (2022)	(No KS2) —	17.4%	24.1%	15.5%
Hillside Community Primary	RI (2023)				

4.2 Ipswich Primary Schools: Summary of Attainment, Needs and Equity Challenges

An analysis of primary schools in Ipswich reveals a clear pattern: pupil characteristics, particularly levels of SEND, FSM, and, to a lesser extent, EAL, are closely associated with KS2 attainment outcomes.

Schools such as Sidegate, Broke Hall, Clifford Road, Dale Hall, and Somersham stand out for consistently performing above both local authority (LA) and national averages in KS2 reading, writing, and maths combined. These schools tend to have relatively low proportions of pupils with SEND and FSM, suggesting a strong link between pupil demographics and academic achievement.

By contrast, schools like Morland, Piper's Vale, Murrayfield, Ranelagh, and Rose Hill, which serve communities with higher rates of deprivation and special educational needs, often fall below both LA and national benchmarks in KS2 outcomes. Morland, for example, has 26.1% of pupils with SEND, and Piper's Vale has 64.3% FSM eligibility, both contributing to lower performance figures around 43–49% RWM.

4.3 Key Trends

4.3.1 Special Educational Needs and Disabilities (SEND)

SEND rates above 20% correlated strongly with lower attainment. For example, Halifax (28.2% SEND) achieved only 47% at KS2 RWM, while Sidegate (7.4%) reached 70%. This pattern reflects the additional learning support required for pupils with complex needs, and the limitations schools may face in fully meeting these needs within current resource constraints.

4.3.2 Free School Meals (FSM)

FSM, as a proxy for deprivation, is a consistent predictor of lower outcomes. Schools with FSM rates over 40% almost uniformly fell below the national average for KS2 attainment. Yet this isn't purely a matter of teaching quality, many of these schools are rated 'Good'

by Ofsted, suggesting that the challenges they face are more structural than instructional.

4.3.3 English as an Additional Language (EAL)

The relationship between EAL and attainment is more nuanced. Some schools with high EAL proportions, like Handford Hall (65.3% EAL, 58% KS2 RWM), perform at or above average, especially when FSM and SEND rates are moderate. However, when high EAL coincides with high FSM (e.g., Ranelagh), the data points to compounded disadvantage.

4.3.4 Ofsted Judgements

While Ofsted ratings reflect overall provision and safeguarding, they do not directly correlate with academic results. Some 'Good' schools, like Piper's Vale and Murrayfield, have KS2 outcomes well below average. This suggests that Ofsted increasingly values quality of curriculum, leadership, and inclusive practice, even in the context of lower academic performance.

4.4 Conclusion and Implications

Ipswich schools demonstrate a clear pattern of educational inequality. FSM and SEND are the most influential factors linked with lower KS2 attainment, while EAL appears to interact with other indicators in complex ways. Despite these challenges, several schools, particularly those with strong leadership and inclusive ethos, are achieving successful outcomes relative to their demographic profiles.

These findings support the case for early and systematic screening for literacy barriers such as dyslexia or speech and language needs, especially in high-need schools. Targeted intervention, family support, and adequate SEN resourcing are vital if the attainment gap is to be closed.

Schools in Ipswich, like many across the UK, are operating in challenging contexts, not underperforming due to weak teaching but are operating in structurally disadvantaged contexts. Investment in early identification, inclusive practice, and community engagement remains key to ensuring every child has a fair opportunity to succeed.

5. The Irlen Syndrome Screening Trial

As part of its commitment to addressing reading difficulties and improving educational outcomes, Let's Talk Reading (LTR) undertook a significant Irlen Syndrome screening trial across four primary schools in Suffolk: Ravenswood, Ranelagh, The Oaks, and Hillside Community Primary. These schools were selected based on indicators of educational and social disadvantage, including above-average proportions of pupils eligible for free school meals (FSM), higher than average levels of special educational needs and disabilities (SEND), and significant numbers of pupils for whom English is an additional language (EAL). For example, Ranelagh Primary has 56.8% FSM, 27.1% SEND and 35.7% EAL, and only 51% of pupils met the expected standard in reading, writing and maths in 2024, below Local Authority and national averages. Hillside had 43.5% FSM, 56.1% EAL and 14.1% SEND, with 49% of pupils reaching the expected standard. Similarly, Ravenswood (32.7% FSM; 18% SEND; 20.6% EAL; with 58% meeting the expected KS2 standard) and The Oaks (33.9% FSM; 18% SEND; 22.8% EAL, with 65% meeting the expected standard). These data reflect both the complexity and vulnerability of the school populations and the heightened risk of unmet needs, such as Irlen Syndrome, going unrecognised. Against this backdrop, the screening trial aimed to evaluate the prevalence of Irlen Syndrome (also referred to as visual stress), test screening methods and responses, and assess the potential educational impact of early identification and support.

This initiative aimed to evaluate the prevalence of Irlen among pupils, trial screening methods and responses, and assess the potential educational impact of early identification and intervention. The findings of this pilot have added important depth to the broader understanding of barriers to reading and access to learning.

5.1 Why Irlen Screening Matters

Irlen Syndrome is a perceptual processing difficulty, not a problem with vision itself, but with the brain's ability to process visual information. It is known to impact reading fluency, accuracy, attention, and comfort. Symptoms may include headaches, eye strain, skipping lines or words while reading, sensitivity to light, or difficulties with tracking text. Because these challenges often go unrecognised or are misattributed to behavioural or cognitive issues, children experiencing visual stress can struggle unnecessarily, leading to frustration, reduced confidence, and poor academic progress, particularly in reading-heavy subjects.

In areas with high levels of disadvantage or limited access to diagnostic services, children with Irlen Syndrome are particularly at risk of remaining unidentified. By including this screening trial in its programme of reading interventions, LTR aimed to provide an equitable opportunity for children who might otherwise fall through the

cracks, while also empowering schools to build sustainable in-house awareness and capacity.

5.2 Overview of the Screening Programme

The trial was rolled out across four diverse schools, each with varying demographic and contextual profiles, as outlined above. In total, 88 children were screened during the trial period, with a focus primarily on Years 5 and 6, where children are approaching transition to secondary school and the curriculum becomes increasingly reliant on reading skill. The exception was Ranelagh Primary, where pupils from Year 1 to Year 6 were included, offering insights into the presentation of Irlen symptoms across the full primary age range.

Pupils were identified by school staff based on observed behaviours consistent with visual stress or reading challenge, following whole-school awareness training delivered by LTR. Each participating school received a staff session explaining Irlen Syndrome, common indicators, and the rationale for screening. This ensured a consistent understanding and allowed schools to nominate pupils with greater accuracy. Importantly, seven school staff members were trained as screeners, with two from each school (except Hillside, who opted for one screener), building internal capacity and embedding the trial's benefits beyond the duration of the initial intervention.

5.3 Diagnosis and Immediate Support

Of the 88 children screened, 77 were given an initial diagnosis of Irlen Syndrome or visual stress, reflecting a strikingly high incidence and validating staff concerns. Each of these children received two coloured overlays (the simplest and most immediate form of support), an information leaflet, and contact details for Irlen East, a regional centre specialising in diagnostic services and treatment. Schools were encouraged to pass this information on to parents and carers. In addition, a full report for each screening was compiled and emailed directly to schools to forward to families, ensuring a clear line of communication and access to follow-up services.

To further support schools in embedding visual support strategies, LTR provided each participating school with £200 towards coloured paper, overlays, and resources, enabling them to begin creating a more Irlen-friendly learning environment. These small but significant adjustments, such as providing worksheets on coloured paper or reducing contrast on the board, can reduce visual strain for affected learners and improve comfort and access in everyday classroom tasks.

5.4 Access to Tinted Lenses

For some children, overlays alone are not sufficient. In more severe cases, individually prescribed tinted lenses are recommended following full diagnostic assessment. LTR's has a commitment to equity and so with their funding,¹⁵ 15 children have received fully funded tinted lenses, while another 2 have been partially funded. A further 3 children have received lenses through alternative funding sources, and 1 family has self-funded. Hillside Primary, who joined the programme later than the other three schools, have only recently completed screening and are currently in the process of identifying which children may benefit from tints. This staged rollout has ensured schools were supported appropriately and that the programme could respond to the unique pace and needs of each setting.

5.5 Broader Implications and Reflections

The outcomes of the screening trial have highlighted both the prevalence of visual stress and the lack of existing identification pathways in primary schools. The fact that 87% of the children screened were identified as having Irlen Syndrome underscores the importance of including visual processing as a consideration in any reading or learning intervention. It also points to the likelihood that many more children in other schools remain unidentified and unsupported.

From an equity standpoint, the trial demonstrates how relatively low-cost, targeted interventions can have meaningful impacts, particularly when combined with staff training and follow-up support. The embedding of knowledge through screener training and awareness sessions has created a ripple effect, enabling schools to continue identifying and supporting new pupils beyond the original cohort.

This model also represents a promising template for future scalability. With trained screeners in place and initial infrastructure built, these schools now have the capacity to roll out screening to future pupil populations. Moreover, the positive outcomes from this trial lend weight to the argument for including Irlen screening as a standard part of reading intervention programmes, particularly in areas facing persistent underachievement.

5.6 Conclusion

LTR's Irlen Syndrome screening trial exemplifies the power of targeted, well-supported intervention in removing hidden barriers to learning. By addressing a frequently overlooked condition and equipping schools with the tools to act, the project not only benefited the individual children directly involved but has created lasting structural

change. As the wider reading strategy develops, Irlen screening offers a vital lens, both literal and metaphorical, through which to understand and support children's learning.

6. Conclusions and Recommendations

This report has presented a detailed evaluation of Let's Talk Reading's (LTR) Irlen Syndrome screening trial across four primary schools in Ipswich. The findings offer compelling evidence of the value of early, targeted screening for visual stress and its potential to transform educational outcomes for children experiencing hidden barriers to reading. The trial not only identified a high prevalence of Irlen Syndrome among the screened cohort but also demonstrated the feasibility and impact of embedding screening within school systems through staff training, resource provision, and follow-up support.

6.1 Summary of Key Findings from the Literature

Sections 1 to 3 of this report explored the complex interplay of neurodevelopmental, perceptual, and environmental factors that influence children's reading development. This literature review highlighted several key conditions that can significantly impair reading acquisition:

- **Dyslexia** is a well-documented learning difficulty affecting approximately 10% of the population. It is characterised by persistent challenges in phonological processing, decoding, and working memory. Despite its prevalence, many children remain undiagnosed due to inconsistent screening practices and limited access to specialist assessment (British Dyslexia Association, 2025).
- **Irlen Syndrome**, or visual stress, affects how the brain processes visual information, leading to symptoms such as text distortion, headaches, and difficulty tracking lines. Although the evidence base is mixed, many children report improved reading comfort and fluency with the use of coloured overlays or tinted lenses (Henderson et al., 2012).
- **Developmental Language Disorder (DLD), ADHD, ASD, and DCD** also impact reading through deficits in language comprehension, attention, executive function, and motor coordination. These conditions often co-occur, compounding the challenges faced by affected children (Duff et al., 2023; Pennington, 2006).
- **Socioeconomic disadvantage** is a major predictor of poor literacy outcomes. Children from low-income households are less likely to receive early intervention and more likely to attend schools with limited resources for SEND support.

The literature strongly supports the case for early identification and intervention. Studies show that children who receive early are significantly more likely to achieve age-appropriate reading levels than those identified later (Rose, 2009; Snowling & Hulme, 2012). Moreover, early reading proficiency is a powerful predictor of lifelong outcomes, including GCSE attainment and lifetime earnings (DfE, 2025).

Despite this, the UK currently lacks a national, standardised screening programme for reading-related conditions. Screening practices are fragmented, often relying on teacher referral or parental advocacy, which disproportionately disadvantages children in under-resourced schools.

6.2 Summary of Key Findings from the trial

- **High Prevalence of Irlen Syndrome:** Of the 88 children screened across Ravenswood, Ranelagh, The Oaks, and Hillside Community Primary Schools, 77 (87%) were identified as experiencing Irlen Syndrome or visual stress. This high rate of identification validates the concerns raised by school staff and highlights the extent of undiagnosed visual processing difficulties in primary-aged children.
- **Immediate and Practical Support:** Each diagnosed child received overlays, information for families, and access to further diagnostic services. Schools were also provided with funding to purchase coloured paper and overlays, enabling them to make immediate classroom adjustments.
- **Equity in Access to Tinted Lenses:** LTR fully funded tinted lenses for 15 children, partially funded 2 more, and supported families in accessing alternative funding. This commitment to equity ensured that financial barriers did not prevent children from receiving the support they needed.
- **Capacity Building in Schools:** Seven staff members across the four schools were trained as screeners, and all schools received whole-staff awareness training. This investment in professional development has created sustainable capacity for ongoing identification and support.
- **Positive Feedback and Engagement:** Schools, families, and children reported improvements in reading engagement, comfort, and confidence following the use of overlays and tints. These qualitative outcomes, while not yet formally measured, suggest a meaningful impact on pupils' educational experiences.
- **Targeted Support in High-Need Contexts:** The schools involved in the trial serve communities with high levels of deprivation, SEND, and EAL. The success of the screening programme in these contexts underscores its potential as a tool for promoting educational equity.

6.3 Conclusions

This report has shown reading difficulties are multifactorial. Dyslexia, Irlen Syndrome, DLD, and other conditions often co-occur and require a holistic approach to identification and support. Early screening is essential. Delayed identification leads to entrenched difficulties, reduced academic achievement, and long-term socioeconomic disadvantage. Current screening practices are inadequate, the lack of a national framework results in inconsistent identification and unequal access to support.

The Irlen Syndrome screening trial has demonstrated that early identification of visual stress can play a critical role in addressing reading difficulties, particularly in disadvantaged school communities. The high rate of diagnosis, combined with the positive response from schools and families, suggests that many children are currently struggling with undiagnosed perceptual processing issues that significantly hinder their academic progress.

Moreover, the trial has shown that screening can be implemented effectively and sustainably within schools. By training staff and providing modest financial support, LTR has enabled schools to take ownership of the screening process and continue supporting pupils beyond the initial intervention. This model of capacity-building is both scalable and cost-effective, offering a blueprint for wider implementation.

Importantly, the trial also highlights the broader issue of inconsistent and fragmented screening practices across the UK. As the literature review in this report makes clear, there is currently no national strategy for the systematic identification of reading-related conditions such as dyslexia, or Irlen Syndrome. This lack of standardisation contributes to significant disparities in access to support, particularly for children in under-resourced schools or from disadvantaged backgrounds.

The evidence presented in this report supports the argument that early, comprehensive screening for a range of reading-related conditions should be a core component of literacy strategy in primary education. The benefits of early identification are well established: children who receive timely support are more likely to achieve age-appropriate reading levels, access the full curriculum, and experience improved long-term educational and life outcomes.

6.4 Recommendations

Based on the findings of this evaluation, the following recommendations are proposed:

1. Expand Irlen Screening Across More Schools

LTR's model has proven effective in identifying and supporting children with visual stress. This programme should be extended to additional schools, particularly those serving high proportions of pupils with SEND, FSM, and EAL. A phased rollout, supported by staff training and modest funding for resources, would allow for sustainable expansion.

2. Integrate Screening for Dyslexia and Other Conditions

While Irlen Syndrome is a significant barrier to reading, it is only one of many. Dyslexia, Developmental Language Disorder (DLD), ADHD, and other neurodevelopmental conditions also impact literacy. A multi-condition screening approach, using validated tools for dyslexia and language difficulties, should be developed and piloted alongside Irlen's screening. This would provide a more holistic understanding of each child's needs and ensure that no child is left unsupported due to a narrow diagnostic focus.

3. Develop a Standardised Screening Framework

LTR, in collaboration with local authorities and other partners, should advocate for the development of a standardised screening framework for primary schools. This framework should include:

- Clear criteria for identifying children at risk
- A suite of validated screening tools for different conditions
- Guidance on referral pathways and follow-up support
- Training modules for school staff

Such a framework would help ensure consistency, quality, and equity in screening practices across schools.

4. Secure Sustainable Funding for Screening and Intervention

While the costs of screening and overlays are relatively low, access to full diagnostic assessments and tinted lenses can be prohibitive for many families. Costs for screening and diagnosis of other conditions like Dyslexia are much higher. LTR should continue to seek funding from charitable, governmental, and philanthropic sources to ensure that financial barriers do not prevent children from accessing the support they need. A pooled funding model, potentially involving local authorities, health services, and education trusts, could provide a more sustainable solution.

5. Monitor and Evaluate Long-Term Impact

To continue to strengthen the evidence base, LTR should continue implementing a system for tracking the long-term outcomes of children who receive screening and support. This could include:

- Changes in reading attainment
- Pupil engagement and confidence
- Attendance and behaviour

- Feedback from families and teachers

Such data is invaluable in demonstrating the impact of screening and making the case for continued investment.

6. Advocate for Policy Change

Finally, LTR and its partners should use the findings of this report to advocate for national policy change. The current lack of statutory screening for dyslexia, Irlen Syndrome, and related conditions is a major barrier to educational equity. By engaging with policymakers, education leaders, and professional bodies, LTR can help drive a shift towards early, inclusive, and evidence-based literacy support.

7. References

Bew, P. (2011). *Independent Review of Key Stage 2 Testing, Assessment and Accountability: Final Report*. Department for Education.

BookTrust. (2025). *Conditions That Affect Reading and Literacy* [online] Available at: <https://www.booktrust.org.uk/resources/find-resources/conditions-that-affect-reading-and-literacy/> (Accessed 24th July 2025)

British Dyslexia Association (2025a) 'Dyslexia and assessment', British Dyslexia Association. [Online] Available at: <https://www.bdadyslexia.org.uk/services/assessments/diagnostic-assessments> (Accessed: 24th July 2025).

British Dyslexia Association (2021) 'APPG: Phonics – and what does the evidence tell us?', *British Dyslexia Association*. [Online] Available at: <https://www.bdadyslexia.org.uk/news/appg-phonics-and-what-does-the-evidence-say> (Accessed: 24 July 2025).

British Dyslexia Association. (2025b). *Written Evidence Submission*. [online] Available at: <https://committees.parliament.uk/writtenevidence/136473/pdf/> (Accessed 24th July 2025).

Buchweitz, A., de Azeredo, L.A., Esper, N.B., Dalfovo, N.P., Picoli, F., da Cunha, F.S., Viola, T.W. and Grassi-Oliveira, R. (2023) 'Developmental dyslexia and the stress of reading: A social stress study of neuroendocrine response in children', *Mind, Brain, and Education*, 17(4), pp. 312–323

Caldani, S., Acquaviva, E., Moscoso, A., Peyre, H., Delorme, R. and Bucci, M.P. (2022) 'Reading performance in children with ADHD: an eye-tracking study', *Annals of Dyslexia*, 72, pp. 552–565.

Crawford, C. and Cribb, J. (2013). *Reading and maths skills at age 10 and earnings in later life: A brief analysis using the British Cohort Study*. Centre for Analysis of Youth Transitions.

Daniel, J., Clucas, L. & Wang, H.-H. (2025) 'Identifying students with dyslexia: exploration of current assessment methods', *Annals of Dyslexia*, 75, pp. 19–41.

Davidson, M.M., Kaushanskaya, M. and Ellis Weismer, S., (2018). 'Reading comprehension in children with and without ASD: The role of word reading, oral language, and working memory'. *Journal of Autism and Developmental Disorders*, 48(10), pp.3524-3541.

Department for Education (2014) *National curriculum in England: English programmes of study – key stages 1 and 2*. London: DfE. Available at: <https://www.gov.uk/government/publications/national-curriculum-in-england-english-programmes-of-study> (Accessed: 24 July 2025).

Department for Education (DfE). (2025). *Key Stage 2 attainment and lifetime earnings: Research report*. London: Department for Education.

DfE (2025) *Giving every child the best start in life*. London: HM Government. [Online] Available at: <https://www.gov.uk/government/publications/giving-every-child-the-best-start-in-life> (Accessed 24th July 2025).

Duff, D. M., Hendricks, A. E., Fitton, L., & Adlof, S. M. (2023). *Reading and Math Achievement in Children With Dyslexia, Developmental Language Disorder, or Typical Development*. *Journal of Learning Disabilities*, 56(5), 371–391.

Dyspraxia UK (2025) *What is DCD /Dyspraxia* [online] Available at: <https://dyspraxiauk.com/index.php> (Accessed 24th July 2025).

Gregg, P., Macmillan, L. and Vittori, C. (2019). Intergenerational income mobility: Access to top jobs, the low-pay no-pay cycle and the role of education in a common framework. *Journal of Population Economics*, 32, pp.501–528.

Henderson, L. M., Tsogka, N., & Snowling, M. J. (2012). ‘Questioning the benefits that coloured overlays offer to children with reading difficulties.’ *Journal of Research in Special Educational Needs*. 13 (1) 57-65

Irlen Syndrome Foundation (2025) *What is Irlen Syndrome* [online] Available at: https://www.irlensyndrome.org/what-is-irlen-syndrome/?gad_source=1&gad_campaignid=1056215993&gbraid=0AAAAADDn5K2E3mTdyp2OH2cp0X1g-rjqB&gclid=Cj0KCQjws4fEBhD-ARIsACC3d29cd-v-KWdFSF8I2D8wDClWrZp5CGsCYot0d8CVaYkE0kGg6iZ8mUaAlB6EALw_wcB (Accessed 24th July 2025).

Irlen Syndrome Foundation. (2015). *Educator Toolkit*. [online] Available at: <https://www.irlensyndrome.org/wp-content/uploads/2015/09/powerpoint-EDUCATOR Toolkit-02.pdf> (Accessed 24th July 2025)

Kriss, I. and Evans, B.J.W. (2005) ‘The relationship between dyslexia and Meares–Irlen Syndrome’, *Ophthalmic and Physiological Optics*, 25(3), pp. 321–330.

Langer, N., Benjamin, C., Becker, B.L.C. and Gaab, N. (2019) ‘Comorbidity of reading disabilities and ADHD: Structural and functional brain characteristics’, *Human Brain Mapping*, 40(9), pp. 2677–2698

Machin, S. and McNally, S. (2008). The literacy hour. *Journal of Public Economics*, 92, pp.1441–1462.

Narr, R.F. (2008). Phonological Awareness and Decoding in Deaf/Hard-of-Hearing Students Who Use Visual Phonics. *The Journal of Deaf Studies and Deaf Education*, 13(3), pp.405–416.

Norbury, C.F. et al. (2016) 'The impact of nonverbal ability on prevalence and clinical presentation of language disorder: Evidence from a population study', *Journal of Child Psychology and Psychiatry*, 57(11), pp. 1247–1257.

Pennington, B.F. (2006) 'From single to multiple deficit models of developmental disorders', *Cognition*, 101(2), pp. 385–413.

Rose, J. (2009) *Identifying and Teaching Children and Young People with Dyslexia and Literacy Difficulties*. London: Department for Children, Schools and Families. [Online] Available at: <https://www.thedyslexia-spldtrust.org.uk/media/downloads/inline/the-rose-report.1294933674.pdf> (Accessed 24th July 2025).

Snowling, M.J. and Hulme, C. (2012) 'Interventions for children's language and literacy difficulties', *International Journal of Language & Communication Disorders*, 47(1), pp. 27–34.

Standards & Testing Agency DfE (2025). *Phonics screening check: information for parents*. [Online] Available at: <https://www.gov.uk/government/publications/phonics-screening-check-information-for-parents> (Accessed 24th July 2025).

Suffolk County Council (2024). *National Child Measurement Programme and Hearing and Vision*. [online] Available at: <https://www.suffolk.gov.uk/children-families-and-learning/childrens-health/national-child-measurement-programme-and-hearing-and-vision> (Accessed 24th July 2025).

Torgerson, C., Brooks, G. and Hall, J. (2006) *A systematic review of the research literature on the use of phonics in the teaching of reading and spelling*. London: Department for Education and Skills. [online] Available at: http://www.dcsf.gov.uk/research/data/uploadfiles/RR711_.pdf (Accessed 24th July 2025)